The year is 2025, and you are on vacation enjoying the sunset on the beach. Suddenly your smartwatch flashes an alert that an intruder is in your backyard and that your home is about to be invaded! You run to your room, grab your smartphone, open an app, and instantly see a surveillance drone flying over your home, streaming live data, and capturing the scene. You can hear the alarm blaring and see that the intruder is baffled and aborts the mission. You receive a call from your virtual insurance agent informing you that the situation has been assessed, and a claim has been filed automatically. The virtual agent has already shared the pictures and video with the insurance company, thanks to the data sent to the cloud by the drone. By the time you settle down for dinner, your virtual agent texts you that all the damage was assessed, and the claim was processed. The system has also placed an order to replace the broken windows and damaged items and that all the repair charges will be covered as part of your smart insurance policy, voila!
While that’s wishful thinking for how the services ought to be (predict & prevent) compared to today (detect & repair), the insurance businesses are embracing emerging technologies. Over the next decade, AI will be deeply embedded into the Insurance industry value chain from underwriting, claims processing, and recommending personalized products. Leveraging AI and machine learning in the insurance industry provides unmatched power in helping insurers with a multitude of problems and use cases, and the industry is just getting started:
The insurance carriers are undergoing a massive transformation, becoming more comfortable with the latest technologies, and shifting focus from product-led to customer-centric models. This transformation is primarily led by the insurers’ adopting and investing in digital capabilities as part of a broader strategy to unify data, advanced analytics, and people across Property & Casualty, Life, and Health insurance segments. The insurers of the future will leverage AI to streamline processes, lower costs, and improve customer experience. The winners will go above and beyond, offering personalized products based on your unique needs, automated interventions for service or repair, and preventing a crisis from becoming a catastrophe.
Introduction Today, we announced the launch of dotData Insight, a new platform that leverages an…
Introduction Time-series modeling is a statistical technique used to analyze and predict the patterns and…
Introduction Time series modeling is one of the most impactful machine learning use cases with…
Introduction Building robust and reliable models in machine learning is of utmost importance for assured…
The past decade has seen rapid adoption of Artificial Intelligence (AI) and Machine Learning (ML)…
The world of enterprise data applications such as Business Intelligence (BI), Machine Learning (ML), and…