A lot has been written over the past few years about AutoML. Automated Machine Learning is a rapidly growing category of software platforms in the field of data science. Looking at the world of data science strictly from the perspective of automating the machine learning component leaves a lot to be desired. In fact, the vast majority of the work that data scientists must perform is often associated with the tasks that preceded the selection and optimization of ML models.
The automation of feature engineering is at the heart of data science. The infographic below shows a side-by-side comparison of how typical “AutoML” platforms can help the data scientist vs. data science automation:
Made with Visme Infographic Maker
OR Linked at:
Infographic: data science automation vs automl
Introduction Today, we announced the launch of dotData Insight, a new platform that leverages an…
Introduction Time-series modeling is a statistical technique used to analyze and predict the patterns and…
Introduction Time series modeling is one of the most impactful machine learning use cases with…
Introduction Building robust and reliable models in machine learning is of utmost importance for assured…
The past decade has seen rapid adoption of Artificial Intelligence (AI) and Machine Learning (ML)…
The world of enterprise data applications such as Business Intelligence (BI), Machine Learning (ML), and…