The insurance industry is one of the earlier pioneers of making data-driven decisions and adopting Machine Learning. Over the last few years, the amount of data has exploded and insurance companies are turning a lot more to AI and ML to help process large quantities of data to drive innovative business decisions keeping the customer at the top of their minds.
With the increase in the volume and variety of data and the needs of the insurance industry, the types of problems that are aimed to be solved with AI and ML have increased tremendously. The below visual gives a sneak preview into the Insurance business areas where machine learning can be leveraged and how often insurance companies are considering incorporating ML into that business area.
Figure: % of Insurance companies that are considering incorporating ML into specific Insurance business areas
Given the variety of problems to be solved using ML, there exists a constraint on the Data Scientists’ time forcing the Data Scientists and companies to focus on one problem at a time. This gets us thinking about the opportunity cost of missing out on bringing more of these ML solutions to the business sooner. Could we accelerate this process of incorporating ML know-how and best practices to help Data Scientists bring more meaningful ML solutions to the business quicker?
One of the top workers’ compensation insurance companies solved a variety of problems using ML and AI automation. The use cases covered areas such as identifying potentially churning policyholders, predicting the chance of a new customer coming on board, predictions to improve the claims processing and other operations, and more. All these use-cases were performed in under 6 months by leveraging AI Automation.
In this blog, we’ll look at one of the popular use cases – predicting which customers are likely to continue with their policy and identifying those that are likely to churn.
To predict if a policyholder will cancel their insurance policy, we first need historical data about the policyholders who did cancel. The historical data available spanned over 4 years of policyholders including hundreds of thousands of policyholders who had historically renewed and a subset of policyholders who had canceled their policy. To assist in making these predictions, data related to the policyholders’ location, type of policy held, anonymized demographic information, and more were used.
Driving large-scale automated feature exploration and automated model building give the Data Scientist the power to investigate many model combinations and to bring the business early on into the model development process thus increasing trust and transparency in the final ML solution released into the business.
This allows the Data Scientist to think about other real complex problems that can be solved with AI/ML. The insurance provider has only just opened up Pandora’s box of problems that can be solved using AI and by leveraging dotData’s AI automation they aim to accelerate their Data Science path in the insurance industry!
Introduction Today, we announced the launch of dotData Insight, a new platform that leverages an…
Introduction Time-series modeling is a statistical technique used to analyze and predict the patterns and…
Introduction Time series modeling is one of the most impactful machine learning use cases with…
Introduction Building robust and reliable models in machine learning is of utmost importance for assured…
The past decade has seen rapid adoption of Artificial Intelligence (AI) and Machine Learning (ML)…
The world of enterprise data applications such as Business Intelligence (BI), Machine Learning (ML), and…