fbpx
Close up image of data analyst

A Vision of Rapid, High-Quality Data Analysis for All Businesses

  • Thought Leadership

Leveraging Data to be Competitive

It is becoming increasingly important for enterprises to leverage data to be competitive. Yet, there are three challenges related to embracing data utilization that all businesses share:

  1. it takes time,
  2. advanced skills, and
  3. expertise.

Together, these challenges make it difficult for enterprises to fully leverage their data for business growth.  Data analytics is not simply prediction by machine learning. Rather, it is a process involving many different steps, including:

  1. data preparation,
  2. feature engineering,
  3. machine learning,
  4. visualization, and
  5. model operationalization.

Until now, completing this process for just a single project would have taken months. Moreover, a wide variety of highly-skilled personnel are needed for each step – such as domain experts, data scientists, data engineers, and BI engineers.  Additionally, processes and outcomes have tended to be highly dependent on the experience and intuition of each individual.

Feature Engineering Made Easy

For feature engineering in particular, it has long been thought that this step can only be done by experts, as it requires deep domain knowledge.  The results derived from machine learning have tended to be “black-box”, so often these results could not be fully leveraged in businesses.  For enterprises to benefit from the full utilization of their data, it is necessary to resolve these challenges and streamline data analysis and application.

dotData’s approach to data science solves these problems through AI and automation. The development of the dotData Platform stemmed from my experience in leading more than 100 data analysis projects at NEC, across a variety of industries.  What I found is that, no matter the industry, a common thought process could be applied on how to build the data analytics process.  From that experience, I was able to invent automated feature engineering.  This was previously the most time-consuming and manual step, requiring high levels of skill and domain knowledge.

The automation of feature engineering is core to dotData in that we can use AI to design hypotheses for features, and automate analytical processes that are applicable to various industries, businesses, or data.  Because we can automatically execute data analysis processes from data preparation through feature engineering and machine learning through to model operationalization, it solves the data analytics challenges related to time and skill sets that have existed until now.  For example, a data analytics use case for a customer of a financial business, which previously required two or three months of work by data scientists, can now be done in less than a day, with equal or better accuracy.

Data Project Completions Increase

As it becomes possible to complete projects significantly faster, there will be an exponential increase in the number of experiments and the discoveries of new use cases.  In addition, our approach provides full transparency and interpretability where the basis for the derived results is apparent.   Therefore, it can easily be implemented in business operations with high confidence and accountability.
As data analytics becomes more efficient, enterprises can operationalize it as part of their everyday processes and accelerate their data-driven initiatives.  We have made it possible for all businesses to utilize AI and machine learning, and have in fact already achieved major results across a number of industries.

As data science automation is adopted, processes that once relied on peoples’ experience and intuition will instead be executed efficiently using data.  As a result, enterprises of all types will be able to analyze data more efficiently.  They can now create better products, services, and generally be more productive while ultimately providing benefit to society as a whole.

dotData
dotData

dotData Automated Feature Engineering powers our full-cycle data science automation platform to help enterprise organizations accelerate ML and AI projects and deliver more business value by automating the hardest part of the data science and AI process - feature engineering and operationalization. Learn more at dotdata.com, and join us on Twitter and LinkedIn.

dotData's AI Platform

dotData Feature Factory Boosting ML Accuracy through Feature Discovery

dotData Feature Factory provides data scientists to develop curated features by turning data processing know-how into reusable assets. It enables the discovery of hidden patterns in data through algorithms within a feature space built around data, improving the speed and efficiency of feature discovery while enhancing reusability, reproducibility, collaboration among experts, and the quality and transparency of the process. dotData Feature Factory strengthens all data applications, including machine learning model predictions, data visualization through business intelligence (BI), and marketing automation.

dotData Insight Unlocking Hidden Patterns

dotData Insight is an innovative data analysis platform designed for business teams to identify high-value hyper-targeted data segments with ease. It provides dotData's hidden patterns through an intuitive, approachable interface. Through the powerful combination of AI-driven data analysis and GenAI, Insight discovers actionable business drivers that impact your most critical key performance indicators (KPIs). This convergence allows business teams to intuitively understand data insights, develop new business ideas, and more effectively plan and execute strategies.

dotData Ops Self-Service Deployment of Data and Prediction Pipelines

dotData Ops offers analytics teams a self-service platform to deploy data, features, and prediction pipelines directly into real business operations. By testing and quickly validating the business value of data analytics within your workflows, you build trust with decision-makers and accelerate investment decisions for production deployment. dotData’s automated feature engineering transforms MLOps by validating business value, diagnosing feature drift, and enhancing prediction accuracy.

dotData Cloud Eliminate Infrastructure Hassles with Fully Managed SaaS

dotData Cloud delivers each of dotData’s AI platforms as a fully managed SaaS solution, eliminating the need for businesses to build and maintain a large-scale data analysis infrastructure. This minimizes Total Cost of Ownership (TCO) and allows organizations to focus on critical issues while quickly experimenting with AI development. dotData Cloud’s architecture, certified as an AWS "Competency Partner," ensures top-tier technology standards and uses a single-tenant model for enhanced data security.