fbpx

How Automation Solves the Biggest Pain Points in Data Science

By Walter Paliska

While most of the attention in the world of AI and Machine Learning is on the algorithms themselves, most data scientists often worry not about the outcome, but instead on the steps involved in arriving at that outcome. The reason for this is simple: building AI and ML models is tedious, complicated, requires a multitude of subject matter experts, and is a highly manual process. In our blogs, we have often highlighted the multiple steps necessary to build useful AI and ML models through data science. Today's article focuses on what data science teams can do to accelerate the building of models, while still achieving the goal of building valuable AI/ML models. As a refresher, below is an illustration of the complexity and multi-step nature of the data science process. To understand the benefits of automation in data science, we first have to know where the most manual work is…